Structure of a Benzoyl Derivative of an Epidioxy-Containing Tobacco Cembranoid

By Jan-Eric Berg*
Department of Structural Chemistry, Arrhenius Laboratory, University of Stockholm, S-106 91 Stockholm, Sweden

and Inger Wahlberg

Reserca AB, S-118 84 Stockholm, Sweden
(Received 28 May 1991; accepted 28 August 1991)

Abstract

S, 2 E, 4 S, 6 R, 7 S, 8 R, 11 S\))-6-Benzoyloxy-8,11-epidioxy-2,12(20)-cembradiene-4,7-diol (1), $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{6}, M_{r}=456.58$, orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=$ 9.131 (2),$\quad b=11.629$ (9),$\quad c=25.203$ (7) $\AA, \quad V=$ $2676.1(2) \AA^{3}, \quad Z=4, \quad D_{x}=1.133(2) \mathrm{g} \mathrm{cm}^{-3}$, $\lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.5418 \AA, \mu=6.06 \mathrm{~cm}^{-1}, F(000)=984$, $T=293 \mathrm{~K}$, final $R=0.066$ for 1666 unique reflections. The structure has a disordered isopropyl group. The torsion angle $\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{C}(15 A)-$ $\mathrm{C}(16 A)$ for group A (occupancy 0.327) is $-58.7(1.9)^{\circ}$ whereas the corresponding angle for group B (occupancy 0.673) is $-69.1(1.1)^{\circ}$. The sixmembered epidioxide-containing ring has a chair conformation. There are two possible intramolecular hydrogen bonds $\mathrm{O}(1) \cdots \mathrm{O}(3)=2.701(6) \AA$ and $O(2) \cdots O(3)=2.981(6) A$, and one possible intermolecular hydrogen bond $\mathrm{O}(1) \cdots \mathrm{O}\left(6^{i}\right)=2.828$ (6) \AA [symmetry code: (i) $-x, \frac{1}{2}+y,-\frac{1}{2}-z$].

(1)

(2)

Experimental. The isolation of 18 mg of the cembranic epidioxide (2) from a chloroform extract of flowers of Greek tobacco and the conversion of part of this material into 3.5 mg of the corresponding $6-O$-benzoyl derivative (1) have been described previously (Arndt, Wahlberg, Enzell \& Berg, 1988). Single crystals of (1) were obtained by recrystallization from a mixture of hexane and ethyl acetate. A colourless prismatic crystal of size $0.18 \times 0.42 \times$ 0.42 mm was studied on a Siemens/Stoe AED2 diffractometer using graphite-monochromatized $\mathrm{Cu} K \alpha$

[^0]0108-2701/92/030564-03\$03.00
radiation. The unit-cell parameters were refined from the θ values of 10 reflections in the range $12.5-25.0^{\circ}$. The symmetry and systematic extinctions of the X-ray reflections were consistent with the space group $P 2_{1} 2_{1} 2_{1}$. A total of 2142 reflections were collected with $\omega-2 \theta$ scans $\left(3<2 \theta<120^{\circ}\right)$, of which 1666 unique reflections were considered observed [F $>4.0 \sigma(F), 0<h<10,0<k<13,0<l<28]$. The intensities were corrected for Lorentz and polarization effects, but no correction was made for absorption. The intensities of three standard reflections ($210,20 \overline{2}$ and 121) were monitored every hour; the total deterioration of intensity was $<3 \%$.

The positions of 21 of the 33 non-H atoms were obtained by direct methods using SHELXS86 (Sheldrick, 1990) while the remaining non-H atoms and one of the two hydroxy H atoms were located from $\Delta \rho$ maps. The isopropyl group was found to be disordered. A disorder model involving two differently oriented isopropyl groups constrained to give C-C distances of $1.54 \AA$ was applied. The occupation factors for each orientation were refined with the sum of occupation factors being fixed to unity. When the disordered model was applied the agreement factor dropped from $R=0.11$ to $R=$ 0.07 . Except for the H atoms bonded to the isopropyl group, which were omitted, all the non-hydroxy H atoms were geometrically placed with a distance of $1.08 \AA$ to the adjacent C atom. The structure was refined by full-matrix least-squares techniques using the program SHELX76 (Sheldrick, 1976) for minimizing $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$. Anisotropic displacement parameters were used for all non-hydrogen atoms with the exception of the atoms of the disordered isopropyl which were set to a common isotropic temperature factor. All H atoms were refined with all isotropic displacement factors constrained to $0.05 \AA^{2}$. The number of refined parameters was 308 . Final agreement factors: $R=0.066, w R=0.071$ ($w R$ $=0.086$ for all significant reflections) using the weighting scheme $w=\left[\sigma^{2}(F)+g|F|^{2}\right]^{-1}$ with $g=$
© 1992 International Union of Crystallography

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement coefficients $\left(\AA^{2} \times 10^{2}\right)$

Equivalent isotropic U is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.				
	x	y	z	$U_{\text {eq }}$
C(1)	-2933 (8)	-6277 (6)	-3479 (2)	6.9 (2)
C(2)	- 1863 (6)	-5429 (6)	-3237 (3)	5.73 (17)
C(3)	- 546 (7)	- 5648 (5)	-3067 (2)	5.37 (17)
$\mathrm{C}(4)$	528 (6)	-4782 (5)	-2852 (3)	5.77 (19)
C(5)	1104 (7)	- 5105 (6)	-2287 (3)	5.9 (2)
C(6)	-6 (6)	- 5434 (5)	- 1852 (2)	5.27 (17)
C(7)	- 1271 (7)	-4602 (5)	- 1773 (2)	5.07 (17)
C(8)	-2257 (8)	-4824 (5)	- 1280 (3)	6.0 (2)
C(9)	-3819 (8)	-4402 (6)	- 1375 (3)	6.6 (2)
$\mathrm{C}(10)$	-4613 (7)	- 5140 (5)	- 1782 (3)	6.5 (2)
$\mathrm{C}(11)$	-4395 (7)	-6430 (5)	-1689 (3)	6.00 (19)
$\mathrm{C}(12)$	-4831 (7)	- 7129 (5)	-2150 (3)	6.2 (2)
C(13)	-3802 (8)	-7195 (6)	-2621 (3)	7.0 (3)
C (14)	-4224 (7)	-6418 (7)	-3098 (3)	7.0 (2)
C (15A)	-3493 (25)	- 5716 (23)	-4006 (7)	105 (2)
C (16A)	-4696 (34)	-6437 (28)	-4277 (13)	105 (2)
C (17A)	- 2020 (29)	- 5831 (25)	-4305 (13)	105 (2)
$\mathrm{C}(15 B)$	-3334 (16)	- 5943 (11)	-4057 (4)	105 (2)
C(16B)	-4114 (17)	-6881 (13)	-4374 (6)	105 (2)
$\mathrm{C}(17 B)$	-4332 (15)	-4882 (11)	-4090 (6)	105 (2)
C(18)	1836 (7)	-4685 (7)	-3221 (3)	7.4 (3)
$\mathrm{C}(19)$	-1611 (11)	-4251 (8)	-770 (3)	9.6 (3)
C(20)	-6127 (8)	-7655 (7)	-2164 (4)	8.3 (3)
$\mathrm{C}(21)$	1211 (6)	-6431 (6)	-1127 (2)	5.20 (19)
C(22)	2101 (7)	-6255 (6)	-646 (2)	5.77 (1)
C(23)	2395 (11)	-7170 (8)	-320 (4)	9.9 (3)
C(24)	3252 (14)	- 7065 (13)	130 (4)	14.3 (7)
C(25)	3793 (13)	- 5953 (11)	262 (3)	10.9 (4)
C(26)	3488 (12)	- 5067 (11)	-55 (4)	12.0 (5)
C(27)	2640 (9)	-5198 (7)	-514 (3)	8.2 (3)
$\mathrm{O}(1)$	- 130 (5)	-3665 (4)	-2792 (2)	6.13 (16)
$\mathrm{O}(2)$	898 (5)	- 5443 (4)	-1362 (2)	6.23 (14)
$\mathrm{O}(3)$	-821 (6)	- 3437 (3)	-1755 (2)	7.86 (18)
$\mathrm{O}(4)$	-2304 (5)	-6019 (4)	-1150 (2)	6.60 (16)
O(5)	-2831 (5)	-6656 (3)	-1615 (2)	6.20 (14)
O(6)	853 (5)	-7370 (3)	-1295 (2)	6.03 (14)

$0.0090 .(\Delta / \sigma)_{\max }=0.01, \Delta \rho_{\text {min }}=-0.24$ and $\Delta \rho_{\max }=$ $0.53 \mathrm{e} \AA^{-3}, S=0.953$. Atomic scattering factors for neutral atoms and real and imaginary dispersion terms were taken from International Tables for X-ray Crystallography (1974, Vol. IV).

The atom-numbering scheme of the epidioxide (1) is given in the scheme above and a PLUTO (Motherwell \& Clegg, 1978) stereo drawing of the molecule is shown in Fig. 1. The final fractional atomic coordinates with standard deviations and equivalent isotropic temperature factors for the non- H atoms are listed in Table 1.* Bond lengths and bond angles are given in Table 2. A ring-puckering analysis (Cremer \& Pople, 1975) of the epidioxide-containing sixmembered ring gave $Q(2)=0.138(6), \quad Q(3)=$ $0.576(6)$ and $\varphi(2)=-78.2(26)^{\circ}$, with total puckering amplitude $Q=0.5922$ (5). All calculations were carried out on a C220 Convex computer.

It can be concluded from the X-ray study that compound (1) is the $6-O$-benzoyl derivate of

[^1]Table 2. Bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for the non-H atoms

$\mathrm{C}(2)-\mathrm{C}(1) \quad 1.5$	1.516 (11)	$\mathrm{C}(14)-\mathrm{C}(1) \quad 1.52$	1.529 (11)
$\mathrm{C}(15 A)-\mathrm{C}(1) \quad 1.5$	1.566 (12)	$\mathrm{C}(15 B)-\mathrm{C}(1) \quad 1.55$	1.552 (11)
$\mathrm{C}(3)-\mathrm{C}(2) \quad 1.302$	1.302 (9)	$\mathrm{C}(4)-\mathrm{C}(3) \quad 1.50$	1.505 (11)
$\mathrm{C}(5)-\mathrm{C}(4) \quad 1.5$	1.563 (11)	$\mathrm{C}(18)-\mathrm{C}(4) \quad 1.52$	1.520 (11)
$\mathrm{O}(1)-\mathrm{C}(4) \quad 1.4$	1.439 (9)	$\mathrm{C}(6)-\mathrm{C}(5) \quad 1.541$	1.541 (11)
$\mathrm{C}(7)-\mathrm{C}(6) \quad 1.5$	1.520 (10)	$\mathrm{O}(2)-\mathrm{C}(6) \quad 1.487$	1.487 (8)
$\mathrm{C}(8)-\mathrm{C}(7) \quad 1.5$	1.556 (11)	$\mathrm{O}(3)-\mathrm{C}(7) \quad 1.416$	1.416 (8)
$\mathrm{C}(9)-\mathrm{C}(8) \quad 1.5$	1.527 (12)	$\mathrm{C}(19)-\mathrm{C}(8) \quad 1.56$	1.564 (12)
$\mathrm{O}(4)-\mathrm{C}(8) \quad 1.4$	1.429 (8)	$\mathrm{C}(10)-\mathrm{C}(9) \quad 1.52$	1.521 (11)
$\mathrm{C}(11)-\mathrm{C}(10) \quad 1.5$	1.530 (11)	$\mathrm{C}(12)-\mathrm{C}(11) \quad 1.4$	1.473 (10)
$\mathrm{O}(5)-\mathrm{C}(11) \quad 1.45$	1.465 (8)	$\mathrm{C}(13)-\mathrm{C}(12) \quad 1.5$	1.516 (12)
$\mathrm{C}(20)-\mathrm{C}(12) \quad 1.33$	1.333 (11)	$\mathrm{C}(14)-\mathrm{C}(13) \quad 1.55$	1.553 (12)
$\mathrm{C}(22)-\mathrm{C}(21) \quad 1.47$	1.474 (10)	$\mathrm{O}(2)-\mathrm{C}(21) \quad 1.32$	1.323 (8)
$\mathrm{O}(6)-\mathrm{C}(21) \quad 1.2$	1.216 (8)	$\mathrm{C}(23)-\mathrm{C}(22) \quad 1.37$	1.371 (11)
$\mathrm{C}(27)-\mathrm{C}(22) \quad 1.3$	1.366 (11)	$\mathrm{C}(24)-\mathrm{C}(23) \quad 1.38$	1.383 (15)
$\mathrm{C}(25)-\mathrm{C}(24) \quad 1.4$	1.423 (16)	$\mathrm{C}(26)-\mathrm{C}(25) \quad 1.33$	1.333 (15)
$\mathrm{C}(27)-\mathrm{C}(26) \quad 1.3$	1.399 (13)	$\mathrm{O}(5)-\mathrm{O}(4) \quad 1.46$	1.468 (7)
$\mathrm{C}(16 A)-\mathrm{C}(15 A) \quad 1.5$	1.542 (12)	$\mathrm{C}(17 A)-\mathrm{C}(15 A) \quad 1.54$	1.547 (12)
$\mathrm{C}(16 B)-\mathrm{C}(15 B) \quad 1.5$	1.528 (11)	$\mathrm{C}(17 B)-\mathrm{C}(15 B) \quad 1.53$	1.536 (11)
$\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{C}(2)$	108.3 (6)	$\mathrm{C}(15 A)-\mathrm{C}(1)-\mathrm{C}(2)$	106.3 (11)
$\mathrm{C}(15 A)-\mathrm{C}(1)-\mathrm{C}(14)$	109.0 (11)	$\mathrm{C}(15 B)-\mathrm{C}(1)-\mathrm{C}(2)$	111.5 (8)
$\mathrm{C}(15 B)-\mathrm{C}(1)-\mathrm{C}(14)$	115.7 (8)	$\mathrm{C}(15 B)-\mathrm{C}(1)-\mathrm{C}(15 A)$	12.0 (13)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	126.9 (7)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	126.1 (7)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	112.7 (6)	$\mathrm{C}(18)-\mathrm{C}(4)-\mathrm{C}(3)$	109.9 (7)
$\mathrm{C}(18)-\mathrm{C}(4)-\mathrm{C}(5)$	108.1 (6)	$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	111.7 (6)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	105.2 (6)	$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(18)$	109.0 (6)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	119.1 (6)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	115.8 (6)
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	103.2 (5)	$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	108.5 (6)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	116.1 (6)	$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	113.1 (6)
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	107.6 (6)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	111.2 (6)
$\mathrm{C}(19)-\mathrm{C}(8)-\mathrm{C}(7)$	111.6 (7)	$\mathrm{C}(19)-\mathrm{C}(8)-\mathrm{C}(9)$	110.1 (7)
$\mathrm{O}(4)-\mathrm{C}(8)-\mathrm{C}(7)$	111.2 (6)	$\mathrm{O}(4)-\mathrm{C}(8)-\mathrm{C}(9)$	108.7 (6)
$\mathrm{O}(4)-\mathrm{C}(8)-\mathrm{C}(19)$	103.7 (7)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	111.7 (6)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	112.9 (7)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	112.7 (7)
$\mathrm{O}(5)-\mathrm{C}(11)-\mathrm{C}(10)$	108.8 (6)	$\mathrm{O}(5)-\mathrm{C}(11)-\mathrm{C}(12)$	105.4 (6)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	118.6 (6)	$\mathrm{C}(20)-\mathrm{C}(12)-\mathrm{C}(11)$	120.9 (8)
$\mathrm{C}(20)-\mathrm{C}(12)-\mathrm{C}(13)$	120.4 (8)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	115.0 (7)
$\mathrm{C}(3)-\mathrm{C}(14)-\mathrm{C}(1)$	110.9 (7)	$\mathrm{O}(2)-\mathrm{C}(21)-\mathrm{C}(22)$	111.5 (7)
$\mathrm{O}(6)-\mathrm{C}(21)-\mathrm{C}(22)$	124.0 (6)	$\mathrm{O}(6)-\mathrm{C}(21)-\mathrm{O}(2)$	124.4 (6)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	119.6 (7)	$\mathrm{C}(27)-\mathrm{C}(22)-\mathrm{C}(21)$	121.6 (7)
$\mathrm{C}(27)-\mathrm{C}(22)-\mathrm{C}(23)$	118.8 (7)	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	122.2 (11)
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	117.9 (11)	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	119.3 (10)
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(25)$	121.8 (11)	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(22)$	119.9 (9)
$\mathrm{C}(21)-\mathrm{O}(2)-\mathrm{C}(6)$	119.9 (6)	$\mathrm{O}(5)-\mathrm{O}(4)-\mathrm{C}(8)$	108.5 (5)
$\mathrm{O}(4)-\mathrm{O}(5)-\mathrm{C}(11)$	109.3 (5)	$\mathrm{C}(16 A)-\mathrm{C}(15 A)-\mathrm{C}(1)$	112.5 (20)
$\mathrm{C}(17 A)-\mathrm{C}(15 A)-\mathrm{C}(1)$	95.4 (17)	$\mathrm{C}(17 A)-\mathrm{C}(15 A)-\mathrm{C}(16 A)$	6A) 110.9 (25)
$\mathrm{C}(16 B)-\mathrm{C}(15 B)-\mathrm{C}(1)$	114.9 (11)	$\mathrm{C}(17 B)-\mathrm{C}(15 B)-\mathrm{C}(1)$	113.0 (11)
$\mathrm{C}(17 B)-\mathrm{C}(15 B)-\mathrm{C}(16 B)$	B) 105.6 (11)	$\mathrm{C}(15 B)-\mathrm{C}(17 B)-\mathrm{C}(16 A)$	A) 49.6 (13)

Fig. 1. A stereoscopic view of $(1 S, 2 E, 4 S, 6 R, 7 S, 8 R, 11 S)$ 6 -benzoyloxy-8,11-epidioxy-2,12(20)-cembradiene-4,7-diol (1). The O atoms are represented as filled circles.
(1S,2E,4S,6R,7S,8R,11S)-8,11-epidioxy-2,12(20)-
cembradiene-4,6,7-triol (2) (relative stereochemistry). As has been described elsewhere, biomimetic synthesis was then used to settle the absolute configuration (Arndt, Wahlberg, Enzell \& Berg, 1988).

Related literature. The cuticular wax of the tobacco leaf and flower is a rich source of diterpenoids of the
cembrane class. Their presence is of interest, since these carbomonocyclic diterpenoids are prone to undergo biodegradation thereby giving rise to odoriferous carboacyclic products (Wahlberg \& Enzell, 1987). It is also noteworthy that some tobacco cembranoids have biological functions, e.g. as growth inhibitors (Springer, Clardy, Cox, Cutler \& Cole, 1975) and insect repellents (Johnson \& Severson, 1984) and that several exhibit antitumourpromoter effects (Saito, Tsujino, Kaneko, Yoshida \& Mizusaki, 1987).

The authors are grateful to Professors Peder Kierkegaard, Rolf Norrestam and Curt R. Enzell, and Dr Arne Björnberg for their support of this work.

References

Arndt, R., Wahlberg, I., Enzell, C. R. \& Berg, J.-E. (1988). Acta Chem Scand. Ser. B, 42, 294-302.
Cremer, D. T. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1358-1367.
Johnson, A. W. \& Severson, R. F. (1984). J. Agric. Entomol. 1, 23-32.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Saito, Y. Tsuino, Y., Kaneko, H., Yoshida, D. \& Mizusaki, S. U. (1987). Agric. Biol. Chem. 51, 941-943.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Springer, J. P., Clardy, J., Cox, R. H., Cutler, H. G. \& Cole, R. J. (1975). Tetrahedron Lett. pp. 2737-2740.

Wahlberg, I. \& Enzell, C. R. (1987). Nat. Prod. Rep. 4, 237-276.

Structure of a 7,8-Epoxycembranoid Isolated from Tobacco

By Jan-Eric Berg*
Department of Structural Chemistry, Arrhenius Laboratory, University of Stockholm, S-106 91 Stockholm, Sweden

and Inger Wahlberg

Reserca AB, S-118 84 Stockholm, Sweden
(Received 6 June 1991; accepted 27 August 1991)

Abstract

S, 2 E, 4 S, 6 R, 7 S, 8 S, 11 E)-7,8\)-Epoxy-2,11-cembradiene-4,6-diol monohydrate (1), $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3}$.$\mathrm{H}_{2} \mathrm{O}, M_{r}=340.5$, monoclinic, $P 2_{1}, a=9.808$ (2), $b=$ 8.019 (4), $\quad c=13.755$ (3) $\AA, \quad \beta=105.73$ (2) ${ }^{\circ}, \quad V=$ 1041.3 (6) $\AA^{3}, \quad Z=2, \quad D_{x}=1.086(6) \mathrm{g} \mathrm{cm}^{-3}$, $\lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=0.687 \mathrm{~cm}^{-1}, \quad F(000)=$ $376, T=293 \mathrm{~K}$, final $R=0.063$ for 2388 unique reflections. The structure consists of a 14 -membered cembrane ring, which is trans-fused to an epoxide function, the torsion angle $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ being $-156.0(4)^{\circ}$. There are two double bonds, one between $C(2)$ and $C(3)$ and one between $C(11)$ and $\mathrm{C}(12)$. Both are of E geometry and have torsion angles $\quad \mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)=173.0(4)^{\circ}$ and $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)=-174.7$ (6) ${ }^{\circ}$. There is one possible intramolecular hydrogen bond $\mathrm{O}(2) \cdots \mathrm{O}(3)=2.921(4) \AA, \quad \mathrm{O}(2)-\mathrm{H}(22) \cdots \mathrm{O}(3)=$ 109.5° and three possible intermolecular hydrogen bonds: $\quad \mathrm{O}\left(1^{1}\right) \cdots \mathrm{O}(4)=2.839(8), \quad \mathrm{O}\left(2^{\mathrm{ii}}\right) \cdots \mathrm{O}(4)=$ 2.989 (4) and $\mathrm{O}(4) \cdots \mathrm{O}\left(3^{\mathrm{ii}}\right)=2.824(5) \AA$, forming

[^2]infinite chains in the $\langle 100\rangle$ direction [symmetry code: (i) $-2-x, \frac{1}{2}+y,-1-z$; (ii) $\left.-1-x, \frac{1}{2}+y,-1-z\right]$.

(1)

(3)

(2)

(4)

Experimental. The isolation of 3.7 mg of (1) from a chloroform extract of flowers of Greek tobacco has been described previously (Wahlberg, Eklund, Vogt, Enzell \& Berg, 1986). A single crystal was obtained by recrystallization from a mixture of hexane and © 1992 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic displacement parameters and H -atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54633 (16 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AB0226]

[^2]: * To whom correspondence should be addressed.

